the curve that "best classifies" the training examples
the curve that "best fits" training examples that are in a class or not
the sigmoid curve that "best fits" training examples whose \(y^{(i)}\) values are 1 or 0
the parameters \( \theta_0 \) and \( \theta_1 \) that minimize the distances from the examples to $$y = \frac{1}{1 + e^{\theta_0 + \theta_1x}}$$
the parameters \( \theta_0 \) and \( \theta_1 \) that minimize the vertical distances from the examples to $$y = \frac{1}{1 + e^{\theta_0 + \theta_1x}}$$
the parameters \( \theta_0 \) and \( \theta_1 \) that minimize $$| y^{(i)} - \frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}} |$$ for examples \((x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})\)
the parameters \( \theta_0 \) and \( \theta_1 \) that minimize $$ \frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}}$$ when \(y^{(i)} = 0 \) and minimize $$ 1 - \frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}} $$ when \(y^{(i)} = 0 \) for examples \((x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})\)
the parameters \( \theta_0 \) and \( \theta_1 \) that minimize $$ -ln(1 - \frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}})$$ when \(y^{(i)} = 0 \) and minimize $$ -ln(\frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}}) $$ when \(y^{(i)} = 0 \) for examples \((x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})\)
the parameters \( \theta_0 \) and \( \theta_1 \) that minimize $$ -(1 - y^{(i)})ln(1 - \frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}}) -y^{(i)}ln(\frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}}) $$ for examples \((x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})\)
the parameters \( \theta_0 \) and \( \theta_1 \) that minimize $$ \sum_{i=1}^{m}-(1 - y^{(i)})ln(1 - \frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}}) -y^{(i)}ln(\frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}}) $$
\( \theta_0 \) and \( \theta_1 \) that minimize $$J(\theta_0, \theta_1) = -\frac{1}{m}\bigg[\sum_{i=1}^{m}y^{(i)}ln(\frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}}) + (1 - y^{(i)})ln(1 - \frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}})\bigg]$$
\( \theta_0 \) and \( \theta_1 \) such that $$\frac{\partial}{\partial \theta_0} \Bigg[-\frac{1}{m}\bigg[\sum_{i=1}^{m}y^{(i)}ln(\frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}}) + (1 - y^{(i)})ln(1 - \frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}})\bigg]\Bigg] = 0$$ and $$\frac{\partial}{\partial \theta_1} \Bigg[-\frac{1}{m}\bigg[\sum_{i=1}^{m}y^{(i)}ln(\frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}}) + (1 - y^{(i)})ln(1 - \frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}})\bigg]\Bigg] = 0$$
\( \theta_0 \) and \( \theta_1 \) such that $$ \sum_{i=1}^m(\frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}} - y^{(i)}) = 0 $$ and $$ \sum_{i=1}^m(\frac{1}{1 + e^{\theta_0 + \theta_1x^{(i)}}} - y^{(i)})x^{(i)} = 0 $$
|